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Abstract: Synchronization graphs, marked graphs, or more precisely T-systems, con-
stitute an important class of Petri nets well suited for the description and analysis of
concurrent but deterministic synchronization schemes. T-systems are a well investigated
model of net theory with a rich collection of theoretical results.

Nevertheless it has recently been found by the author that a fundamental problem
concerning the nature of concurrency and causality has not been addressed so far,
namely the question if there exists another binary relation between net elements not
covered by concurrency and causality in safe and live T-systems. Here we will give a
negative answer by proving that every two elements are either concurrent or causally
dependent (tertium non datur).

Another issue that has not received much attention so far is the notion of security intro-
duced by C. A. Petri with the motivation that it provides a more adequate abstraction
of technical safety than the usual notion of safety in net theory. As an application of the
first result on the nature of concurrency and causality we will prove that a surprisingly
simple structural criterion for security proposed by C. A. Petri and C. Y. Yuan actually
provides a characterization of security in safe and live T-systems.
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1 Introduction

Abstract notions of concurrency and causality have been studied by C. A. Petri
in the context of concurrency theory [9] [10] [11]. Following [11] its structures are
triples (X,li,co) where li and co are irreflexive, symmetric binary relations over
a set X. The basic axioms include co N li = @ and co U lividy =X x X. The
standard interpretations for li and co are (undirected) causality and concurrency,
respectively, although further interpretations are suggested in [9].

Since the introduction of the first ideas of concurrency theory in [7] and [8]
different sets of axioms, interactions between them, extensions and refinements of
the theory have been studied [9] [2] [16] [10] [11] [1] [13] [6]. A general motivation
was to provide a foundation for the theory of Petri nets and their processes in



terms of more elementary concepts. In addition to the investigation of partial-
order-based models [1] [2] where li is generated from a partial order by li = (<)u
(<)_1 there are also some results on models which do not rely on the assumption
of an underlying partial order [17] [5] [6] [18]. As an example for the latter class
we have studied concurrency structures associated with T-systems as models of
concurrency theory [6].

Although definitions of causality and concurrency directly on T-systems instead
of on their processes were originally motivated by our interest in T-system models
of concurrency theory, they will play a different role in the present work: The
binary relations of concurrency and causality will be used as a means to express
important aspects of arbitrary safe and live T-systems.

The notion of security has been introduced for elementary net systems in [12],
since safety has been found to be not an appropriate abstraction of technical
safety if the objects modeled by tokens exhibit a spatial or temporal extension
(as it is usually the case). Whereas safety is defined as the absence of contacts,
security requires additionally the absence of transjunctions. Intuitively, a tran-
sjunction is a situation where “successive” tokens are not separated by an empty
place. So security ensures that a well-defined separation between tokens is main-
tained explicitly in the net model. There are different ways to achieve security,
either by net transformation or, more economically, by choosing an appropriate
synchronization scheme as a basis of the system design. For the latter possibility
a parameterized class of security structures, called cycloids, has been proposed
in [14].

The present work is organized as follows: After some preliminaries fixing termi-
nology and recapitulating folklore results about T-systems, we provide some facts
about flow reversal in Section 3 that will be important for the proof of our main
result. Next we provide definitions of causality (li) and concurrency (co) which
are appropriate for safe and live T-systems. Formally, we will define irreflexive,
symmetric relations li,co C X x X, where X is the set of net elements. In Sec-
tion 5 we prove the main result, namely that co and /i do not only satisfy the
equation co N li = () but also co U li U idy = X x X. Finally, in Section 6 this
result is applied to prove a structural characterization of security in T-systems
which is of remarkable simplicity.

2 Preliminaries

A possibly infinite sequence w is a function such that dom(w) is a subset of the
integers and i,k € dom(w) A i < j < k = j € dom(w). The elements of dom(w)
are called indices of w. We will use sequences together with the obvious definition
of concatenation denoted by juxtaposition. Elements are conceived as singleton
sequences.



As in [14] a net N is a triple (S,7,F) with SN T LG (8 T) U (T x.5),
FAF'=0 dom(F)Uran(F)=SUT. S, T, and F are the set of places, the
set of transitions, and the flow relation, respectively. X := S U T is also called
the set of net elements. For a net element z € X the preset and postset of x are
ez := F~'[z] and z* := F|z], respectively. Two distinct transitions t,t' € T are
said to be independent iff (*t U t*) N (' U ") = (. Notice that the definition
of a net excludes side-conditions, i.e. places in *t N0 %, and isolated net elements,
i.e. elements z € X with *z U z* = 0.

A set M € P(S) is called a marking of N. An element z € M is said to be marked
at M. The occurrence relation (=) € P(S) x P(S) for t € T is the smallest
relation satisfying M U *t — M U t* for some marking M disjoint from *f and
t* In case of M —s M' we say that t is (forward) enabled at M, t is backward
enabled at M’ and M’ is reachable from M by the occurrence of t. We also write
M % M' for a sequence w = (W .. wn-1) iff there is a sequence m = (Mg isis
my) = (M ... M) with m; .3 mi4 for all indices 1 € $0.i: n—1}. Moreover, we
define a relation (=) € P(S) x P(S) by M - M' & Ft € T: M 5 M' and
an equivalence relation (&%) := (= U —~1)". For a marking M the set (M| M
—* M'} is called the forward case class generated by M and {M' | M &+ M'}
is the full case class generated by M.

T-nets are nets without branching places, i.e. |°s|, |s*] < 1 for all s € S. An
(elementary) T-system (N,Cq) is a T-net equipped with a marking . The
forward case class of (N,Cp) is the forward case class generated by Cp and is
denoted by C.

Let N be a net and M be a set of markings. M is (forward) safe iff there is no
marking M € M and transition t € T such that t has a (forward) contact at M,
je.tCMandt*NM#0. Mis backward safe iff there is no marking MeM
and transition t € T such that ¢ has a backward contact at M, i.e. t° C M and
“t N M # 0. Mis (forward) live iff for every marking M € M and transition
e T there is a marking M' € M with M —° M’ such that t is enabled at M.
M is backward live iff for every marking M € M and transition t € T there is
a marking M’ € M with M' =* M such that ¢ is backward enabled at M’. M
has a (forward) deadlock iff there is a marking M € M such that no transition
is enabled at M.

Throughout this work we assume that (N,Co) is a T-system with a net N =
(S,T,F) that has the following properties: S U T is non-empty and finite, N is
connected, ie. (FUF™) =X x X.

A sequence w is said to be a chain iff w; F wiyy for all indices @, 1+1 € dom(w).
A chain w is simple iff w; # w; for all indices 1 # j of w. A finite chain w =
(wp ... wp-1) is a cycle iff it is nonempty and wp_1 F wo. A circuit is a simple
cycle. A sequence w carries [{i € dom(w) | w; € M}| tokens at a marking M.
Since N is a T-net, the number of tokens carried by a cycle/circuit is invariant



under occurrence of transitions. We say that a sequence w is marked at M iff it
carries at least one token at M. A cycle/circuit w is a basic cycle/basic circuit
iff it carries exactly one token at Cj.

We will implicitly use the following folklore results, which can be adapted to our
terminology e.g. from |3] or [4]: If C is safe and live then N is strongly connected.
C is safe and live iff every circuit carries at least one token and every net element
is contained in a basic circuit. If C is safe but not live then C has a deadlock.

The concept of basic cycle is usually not considered in the context of safe and
live T-systems, since it is equivalent to the notion of basic circuit. This fact will
be exploited in the proof of our main result.

Remark 2.1 If C is live then w is a basic circuit iff w is a basic cycle.

Proof  Clearly every basic circuit is a basic cycle. It remains to prove the
converse. Let w be a basic cycle. Assume w is not a circuit. Then there is a
net element x occurring at least twice in w. W.lo.g. we can assume that z is a
transition, because N is a T-net. Now w has the form (w' z w"” x w™) and carries

a single token. Hence, it can be decomposed into two cycles (z w") and (z w"
w'), but at most one of them can be marked, contradicting liveness. O

3 Flow Reversal

Flow reversal is a simple operation associating to each net N = (S,T,F) the
reverse net N7! := (S,T,F"l). In general, flow reversal can destroy important
properties, however, it is rather well-behaved for safe and live T-systems, as
demonstrated subsequently. This will enable us to use flow reversal as a technical
means in the proof of our main result. Since the effect of flow reversal has not
been treated in the Petri net literature, we have included the proofs. Remember
that C is the forward case class of (N,Ch).

Remark 3.1 If C is live and (forward) safe then C is backward safe.

Proof Assumet € T has a backward contact at some case C' € C. Since N is
strongly connected (due to safety and liveness) we have t* C C and there is some
s € *t N C. Again due to safety and liveness, s must be contained in a basic
circuit w, but then w contains some s' € *. Now we have s # s, since NV has no
side-conditions, and s,s' € C contradicting the fact that w is a basic circuit. O

The next lemma states that backward occurrence can be simulated by forward
occurrence in safe and live T-systems.

Lemma 3.2 Let C be safe and live and assume a marking C' € C and an arbitrary
marking M.
Then M = C implies C —* M for each ¢ el

Proof  There is a finite sequence w of transitions such that C % C and w



contains each transition exactly once (see e.g. [3]). So we have C C A @ with
finite sequences u and v. From M 2 C we obtain *t € M and t* C C." We
will first prove the claim that ¢ and ¢’ are independent for all t' occurring in v.
Assume there is a transition ¢ in v such that ¢ and t' are not independent. It
follows that there is a place s € S such that s € *t N " or s € * N *¢,. Inthe
first case s is marked after the occurrence of ¢ and, since s € *1 and ¢t is not
contained in v, s remains marked in final marking C. But then ¢ would have a
backward contact at C contradicting safety and liveness (see previous remark). In
the second case s is marked after the occurrence of t. Then the token is removed
by # in v. Hence s is unmarked at C. But this contradicts s € t* C C. So the
claim about independence holds, and we can reshuffle ¢ “5”7°C to obtain C Y2
C by exchanging independent neighbors of the transition sequence. Due to M Pt

C the last relation can be decomposed into C G S0, O

Remark 3.3 The forward case class C is equal to the full case class generated
by C and is invariant under flow reversal.

Proof Equality follows from the previous lemma. Invariance under flow rever-
sal is obvious from the definition of the full case class. O

By the previous remark the forward case class and full case class generated by C
coincide. Hence we will refer to them simply as the case class C in the remainder
of this work.

Lemma 3.4 If C is safe and live then for all C,C" € C we have C —*C.

Proof C,C' € C implies Cp —»* C and Cp —° C’'. By Lemma 3.2 we obtain C
—* C. O
Finally we observe that safety and liveness together are preserved by flow reversal.
Remark 3.5 If C is safe and live w.r.t. N then C is also safe and live w.r.t. Nt
Proof Safety of C wrt. N -1 follows from backward safety w.r.t. N which
holds by Remark 3.1. Liveness of C w.r.t. N~ follows from backward liveness
w.r.t. N, which can be proved as follows: Due to liveness of C w.r.t. N for every
marking C € C and transition ¢t € T' there is a marking C" with C —* C" such that
t is enabled at C". Let C" be a marking with C' = C". Clearly, t is backward
enabled at C". Moreover, C" —* C because of C,C" € C and Lemma 3.4. O

For the remainder of this work we restrict our attention to safe and live
T-systems (N,Cy), i.e. T-systems with a safe and live case class C generated by

Co.

4 Causality and Concurrency

In this section we will define causality and concurrency for T-systems using a
simple technical device, namely T-splitting. In [14] T-splitting has been used



to obtain security from safety. Here T-splitting allows us consider the original
net N together with a refined version N where the activity of transitions can
be observed from the state. It may be helpful to think of N as a net where
transitions can be marked (cf. [6]). Technically, the refined net will enable us to
speak about net elements in a uniform way.

The refined net N := (S,T,F) obtained by T-splitting from N. It is defined by S
s=E| el )T = {f,t |t € T} and F being the smallest relation satisfying
(a).f F i B ()3 Féifs Ft,(c)t F3ift Fsforse Sandte T. This
refinement induces a net morphism ¢ : N — N mapping &, &, & to x in the sense

of [14]. For convenience we identify z and 7 for all z € X throughout the work.

Observe that T-splitting does not change the behavior of a T-system essentially.
More precisely, the refined T-system (N,(f'u) has a safe and live case class C
generated by C, which satisfies C N P(S) = C. C is also called the refined case
class of (N,Cy).

Now it is easy to introduce appropriate notions of causality and concurrency for
T-systems: Let z and y be different net elements of N. z and y are causally
dependent (x (i y) iff there is a basic circuit of N containing both z and y.
and y are concurrent (z co y) iff there is a marking in the refined case class C
containing both z and y. Intuitively, two net elements z and y are concurrent iff
they can be active/marked concurrently.  and y are causally dependent on the
other hand iff they must be active/marked in strict alternation.

Remark 4.1 /i and co are invariant under flow reversal.
Proof Holds by definition for i and follows from Remark 3.3 for co. O

Actually, the relation {7 is the binary aspect of a more general view of T-systems
as cyclic orders [19] but as demonstrated in [17] already a single binary relation,
either li or co, is sufficient to determine the structure and dynamics of a rather
general class of T-systems uniquely up to flow reversal.

5 The Main Result

We will first give a technical lemma prepared by the following proposition, which
is of independent interest, since it conveys a fundamental aspect of the topological
nature of safe and live T-systems: We can always reach one net element from
another one via the flow relation such that there is a marking in the refined case
class that has not to be passed.

Proposition 5~.1 Let z and y be distinct net elements of N. Then there is a
marking D € C containing z and a simple chain v = (z v’ y) such that v’ is
unmarked at D.



Proof Due to liveness and strong connectedness there is a marking C e
containing z. Let w be a basic circuit containing . Consider the marking C' :=
C — {z} and the refined case class C' generated by it. As w carries no token at
¢ ’,ff’ is not live. Hence, from (" we can reach a deadlock at some marking D'
e C'. Due to safety every transition has at least one empty input place at D'.
Starting from y and proceeding along F = we can construct a backward-infinite
chain (u y) such that u carries no token at D'. Due to finiteness of X' the infinite
chain » must contain a circuit w.r.t. C'. This unmarked circuit was impossible
w.r.t. C, because C is live. It follows that x must be contained in this circuit
and consequently it is contained in u. Hence, (u y) is of the form (u' x v" y u'")
and w.l.o.g. we can assume that the length of v’ is minimal. Observe that v =
(z v' y) is a chain with v’ being unmarked at D'. Due to minimality of v' and
z # y the chain v is simple, in particular z is not contained in v’. So v’ is also
unmarked at D ;= D' U {«}, which is a marking of ik O
For the proof of the main result we will need a modification of the previous
proposition. It is given by the following lemma.

Lemma 5.2 Let = and y be distinct net elements of N such that = (z co y). Let

u = (z u' y) be a chain such that z is not contained in u" and let C' € C such

that = and u' are marked at C. Then there is a marking D € C containing r and
a simple chain v = (z v’ y) such that v is unmarked and u' is marked at D.

Proof Extend the previous proof as follows: Proceed as above using the sup-
plied marking C' € C. Clearly, u' is marked at C':= C — {z}. Observe that we
cannot have an intermediate marking C" containing y and reachable from C’ (in
particular y is not marked at the deadlock D'). Otherwise C" U {x} would be
a marking of C violating - (z co y). Consequently, the number of tokens in u'
cannot decrease while going from g to Ir as this is only possible via y. Hence
u' remains marked at D' and also at D := D' U {z}. O
Theorem 5.3 For net elements z # y we have either x li y or x co y but not
both.

Proof The fact that z li y implies = (z co y) follows immediately from the
definitions of i and co. It remains to prove that = (z co y) implies x li y. So
assume = (z co y). Due to strong connectedness & and y are contained in at
least one cycle w. Let u = (z u' y u") be a cycle containing = and y carrying a
minimum number of tokens. By liveness u carries at least one token. If u carries
exactly one token then it is a basic cycle and also a basic circuit (see Remark 2.1)
proving z li y. Otherwise u carries at least two tokens. Consider a marking C €
C containing z. As x and y cannot be marked simultaneously (here we use = (i
coy)), u' or u” is marked. First we consider the case where u’ is marked: Observe
that z is not contained in ', otherwise a cycle containing x and y carrying fewer
tokens could be constructed. Now the preceding lemma provides a marking D €
¢ and a simple chain (z v’ y) such that v' is unmarked and ' remains marked



at D. So we can construct a new cycle (z v' y u") which carries fewer tokens
than u at D, contradicting the minimality assumption. Finally, we deal with the
case where u” is marked by considering the reverse T-system (N~!,C;) instead
of (N,Cp). This can be justified by the following facts: C is also the case class
generated by Cp w.r.t. N™' (by Remark 3.3). C is safe and live (by Remark 3.5)
w.r.t. N7'. co is invariant under flow reversal (by Remark 4.1). The number of
tokens carried by cycles is invariant under flow reversal. Exploiting these facts
we can apply the same argument as in the previous case (replacing F' by F~! and
exchanging u' and ") to derive a contradiction. O

6 Characterizing Security

As an easy application of the previous theorem we obtain a security characteri-
zation that has already been proposed in [15] as a security criterion but without
proving that it actually characterizes security in safe and live T-systems.

For a net N a set M of markings is said to be secure iff M is (forward) safe and
backward safe and there is no marking M € M and transition ¢ € T such that ¢
is in transjunction at M. Here a transition t is said to be in transjunction at M
N M #QAt N M #0. In contrast to the definitions of contact the notion
of transjunction is invariant under flow reversal.

Remember that C has been assumed to be safe and live and it coincides with the
full case class. Indeed it is the full case class which has been used in the original
definition of security in [12] and [14] for M.

Corollary 6.1 C is secure iff for every t € T' every pair x € *t, y € t* is contained
in a basic circuit.

Proof (<) Backward safety follows from safety by Remark 3.1. Moreover, C
is obviously free of transjunctions due to the structural condition. (=) Let t € T
and z € *t, y € t*. We have z # y, since N has no side-conditions. From security
it follows that there is no marking C' € C with z,y € C. By definition of co we
obtain - (z co ) and using Theorem 5.3 we conclude z i y. Now x and y are
contained in some basic circuit according to the definition of /1. O

From the non-trivial part of this corollary it follows that there is only one way
to achieve security, namely by structural means of a very special kind.

7 Final Remarks

The main theorem about the structure of concurrency and causality presented in
Section 5 has been derived as a by-product while investigating the close relation-
ship between cyclic orders and T-systems [18]. Nevertheless we believe that this

A



result is of independent interest due to its generality and its close connection to
the notion of security. From the results of this work we conclude that security can
be characterized structurally in terms of a single binary relation, either causality
or concurrency.

From a foundational point of view these results shed new light on the local axioms
of concurrency theory (cf. [17]), stating that the immediate neighborhood of
each element consists of two co-equivalence classes related by li. Interpreting
the two co-equivalence classes as the immediate past and the immediate future
of an element, respectively, the local axioms require that the immediate past
and immediate future of a single element are causally dependent. From this
perspective security is just a reformulation of this natural assumption on the
level of net systems.
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